Tadinyaexcel sama chrome gabisa dibuka, skrg tinggal excel ajaa.. Udh nyoba cara diatas masi gabisa. Pas update driver tulisannya the best driver are already installed. Pas pake yg sfc /scannow tulisannya apaya pokoknya gada masalah yg ditemukan aja ktnya.. Pas yang cara letiga yg add file ituloh pokoknya,, tetp gabisa.. How dis minn..
Jakarta, IDN Times - Sebagai penyangga dudukan pada komstir dan suspensi depan, segitiga motor memiliki fungsi yang esensial. Karena aspek keamanan hingga kenyamanan dalam berkendara motor ditunjang oleh komponen ini. Sehingga jika segitiga motor mengalami permasalahan, seperti bengkok, motor akan tak nyaman dan tak aman untuk motor yang bengkok mungkin tak akan begitu terlihat secara sekilas, namun permasalahan ini harus segera diperhatikan agar tak menimbulkan permasalahan lain. Nah, berikut ada informasi seputar penyebab segitiga motor bengkok, tanda-tanda segitiga motor yang bengkok, hingga cara memperbaiki dan estimasi biaya Penyebab segitiga motor bengkokSegitiga motor bengkok bisa terjadi karena berbagai faktor penyebab. Berikut merupakan penyebab mengapa segitiga motor bisa menjadi bengkok Motor mengalami kecelakaan Insiden kecelakaan lalu lintas merupakan salah satu faktor utama mengapa komponen motor bisa rusak, termasuk pada bagian segitiga motor. Saat motor menabrak sesuatu, posisi segitiga motor menjadi tak presisi seperti semula. Sehingga biasanya motor yang mengalami kecalakaan akan terasa oleng atau miring di satu sisi. Pemakaian motor yang serampangan dan sembrono Pemakaian motor yang kasar’ bisa menyebabkan segitiga motor bengkok. Contohnya adalah berkendara dengan kecepatan tinggi di jalanan yang rusak. Roda motor akan menggilas batu atau benda-benda lain yang berserakan di jalan dengan kasar, sehingga setang motor akan ikut bergetar. Motor melintas di jalanan berlubang dengan keras Jalanan yang rusak dan berlubang memang memerlukan kewaspadaan tinggi. Karena saat motor melibas jalanan berlubang terutama dengan kecepatan tinggi, motor akan mengalami benturan yang dapat membuat segitiga motor jadi bengkok, ditandai dengan adanya kendor pada komstir atau stang motor jadi sedikit bergeser. Usia pemakaian motor yang sudah terlampau tua’ Usia pemakaian yang sudah cukup lama bisa jadi penyebab segitiga motor bengkok, lho. Akan ada komponen motor yang aus atau mengalami kelonggaran, karena jangka waktu pemakaian motor yang cukup lama. Motor jarang dirawat Motor yang jarang dirawat juga menjadi salah satu peneybab segitiga motor jadi bengkok. Hal ini karena motor seharusnya dilakukan servis secara berkala, sebagaimana anjuran pakar otomotif hingga produsen motornya. Dari servis berkala ini, motor akan diperiksa secara menyeluruh dan diperbaiki apabila terdapat permasalahan. Ada komponen lain yang rusak Komponen motor lainnya yang juga bisa jadi penyebab segitiga motor bengkok, mulai dari shockbreaker, setir, hingga as motor yang rusak atau tidak rata. Baca Juga Alasan Bensin RON Rendah Bikin Mesin Motor Menggelitik 2. Tanda-tanda segitiga motor bengkokSegitiga motor yang bengkok biasanya tak akan begitu terlihat dengan jelas secara sekilas. Namun permasalahan motor ini akan terasa begitu motor digunakan atau diperhatikan secara seksama. Berikut adalah ciri-ciri atau tanda segitiga motor yang bengkok Stang motor terasa berat Stang motor yang terasa berat, terutama saat akan digunakan untuk belok, bisa jadi salah satu ciri yang menandakan segitiga motormu mulai bengkok. Jika mulai muncul gejala seperti ini, segera periksakan lebih lanjut ke bengkel. Ada suara-suara kasar dari dalam bagian motor Jika muncul suara-suara kasar saat motor digunakan, ini bisa jadi tanda segitiga motormu bengkok. Suara kasar yang muncul ini seperti gemerisik dari bagian dalam motor, terutama saat motor melaju di jalanan yang tak rata. Hal ini disebabkan karena ada bagian-bagian yang longgar pada komstir. Pengereman tidak lancar atau bahkan blong Kurangnya performa pengereman juga bisa jadi tanda segitiga motor bengkok. Hal ini karena adanya jarak akibat dari segitiga motor yang bengkok saat menggunakan rem depan. Jarak tersebut membuat pengereman jadi tidak cakram. Stang motor bergetar Stang motor yang bergetar tentu tak terasa nyaman saat dikendarai. Ini bisa jadi salah satu gejala segitiga motormu bengkok. Selain itu, getaran stang ini juga dapat membuat longgar komponen motor lainnya seperti pelor bearing, hingga membuat stang sulit diarahkan saat Solusi perbaikan segitiga motor bengkok hingga estimasi biaya perbaikannyaJika mulai merasakan tanda-tanda segitiga motor yg membengkok, kamu harus segera melakukan perbaikan ke bengkel. Biasanya perbaikan segitiga motor yang bengkok dilakukan tindakan press segitiga press segitiga motor pun bervariasi, tergantung jenis motor hingga bengkelnya. Tarifnya dibanderol mulai dari Rp30 ribu hingga Rp250 informasi seputar permasalahan segitiga motor bengkok, mulai dari penyebab, gejala permasalahan, hingga cara memperbaiki dan estimasi biaya perbaikannya. Jika mengalami permasalahan seperti ini pada motormu, segera perbaiki ke bengkel terpercaya agar kenyaman dan keamananmu selama berkendara tetap Syahrial Maulana Sudarto Baca Juga Mudah, Begini Cara Atasi Setang Motor Berat Motoryang tidak stabil atau terasa goyang itu merupakan penyebab atau tanda bahwa segitiga motor bengkok/miring. Bagaimana cara cek segitiga yang sudah miring ? berikut tips untuk mengetahiunya : 1. Motor di standar

By Nippon Pulse America Have you ever picked up a motor and discovered it had a few more wires then you were expecting? If so, it was likely a step motor. Step motors are commonly used in a number of products, from wrist watches to printers, IV pumps to gas pumps. They are also found in machine tools, process control systems, tape and disk drive systems, and programmable controllers. Common permanent-magnet PM step motors are the Tin Can or claw-tooth type. They operate on the reaction between a permanent-magnet rotor and an electromagnetic field. As common as step motors are, however, there is much confusion about the differences between Unipolar and Bipolar step motors, and how Constant Current and Constant Voltage step motor drives work. This 2-part series will cover the most important steps of troubleshooting any step motor system. It will include an overview of step motors — what they are and how they work, and how to troubleshoot them. The second article will also cover the electronics needed to make a step motor run, and provide more information on troubleshooting. The basics A step or stepping motor converts electronic pulses into mechanical movement. Each electronic pulse “step” causes the shaft to rotate a certain number of degrees step angle. Thus, a step motor can operate in an open loop application where it will move a certain distance at a certain speed without the need for feedback. The step motor can maintain the holding torque indefinitely when the rotor is stopped without burning up the motor windings. When a step motor has a steady dc signal applied to one stator winding, the rotor will overcome the residual torque and line up with that stator field. The holding torque is the amount of torque required to move the rotor one full step with the stator energized. A step motor converts electronic pulses into mechanical movement. Each pulse “step” causes the shaft to rotate a certain number of degrees step angle, enabling open loop operation. When no power is applied to the windings, a small magnetic force develops between the permanent magnet and the stator. This magnetic force is called the residual, or detent torque. It can be noticed by turning a step motor by hand and is generally about one-tenth of the holding torque. In a typical one-phase step sequence for a two phase motor, phase A of a two-phase stator is energized Step 1. This magnetically locks the rotor in the position shown, because unlike poles attract. When phase A is turned off and phase B is turned on, the rotor rotates 90° clockwise. In Step 3, phase B is turned off and phase A is turned on but with the polarity reversed from Step 1. This causes another 90° rotation. In Step 4, phase A is turned off and phase B is turned on, with polarity reversed from Step 2. Repeating this sequence causes the rotor to rotate clockwise in 90° steps. Here is a typical step sequence for a two phase motor. There are three main types of step motors permanent-magnet PM, variable reluctance VR and hybrid. The permanent-magnet PM step motor operates on the reaction between a permanent-magnet rotor and an electromagnetic field. One of the most common PM motors are the Tin Can or claw-tooth type. In tin can steppers, the rotor shaft is surrounded by a magnet with radially opposing poles. It has no teeth. The stator is a series of poles with wound wire coils. Because of the magnet, the rotor will resist movement even when the motor is not energized. Permanent magnet step motors are used in low-cost, low-power applications. The bill feeder inside vending machines is driven by a permanent magnet step motor. The variable-reluctance VR step motor differs from the PM stepper in that it has no permanent-magnet rotor and no residual torque to hold the rotor at one position when turned off. This type of motor operates on the principle of minimizing the reluctance along the path of the applied magnetic field. One of the first uses for variable-reluctance step motors was to move the direction indicator of torpedo tubes and guns on British warships in the 1920’s. Shortly thereafter, they were used by the US Navy for a similar purpose. The hybrid step motor consists of two pieces of soft iron, as well as an axially magnetized, round rotor. It’s called a hybrid because the motor operates under the combined principles of the permanent magnet and variable-reluctance step motors. The stator core structure of a hybrid motor is essentially the same as its VR counterpart. The main difference is that in the VR motor, only one of the two coils of one phase is wound on one pole, while a typical hybrid motor will have coils of two different phases wound on the same pole. In this cross section of a two-phase hybrid motor, each pole is covered with uniformly spaced teeth that are misaligned with each other by a half-tooth pitch. The interaction of the magnetic field of the permanent magnet and the magnetic field produced by the stator create torque. The two coils at a pole are wound in a configuration known as a bifilar connection. Each pole of a hybrid motor is covered with uniformly spaced teeth made of soft steel. The teeth on the two sections of each pole are misaligned with each other by a half-tooth pitch. Torque is created in the hybrid motor by the interaction of the magnetic field of the permanent magnet and the magnetic field produced by the stator. Most hybrid steppers are NEMA size motors. The windings for steppers come in two types Bipolar and Unipolar. There are a number of advantages to each type of winding. The two-phase stepping sequence described earlier uses a “bipolar coil winding.” Each phase consists of a single winding. It is referred to as a bipolar winding because the current flow on the coils is reversed. By reversing the current in the windings, electromagnetic polarity is reversed. The unipolar winding is sometimes called a four-phase stepper. It consists of two windings on a pole connected in such a way that when one winding is energized a magnetic north pole is created; when the other winding is energized, a south pole is created. It is referred to as a unipolar because the electrical polarity, or current flow, from the drive to the coils is never reversed. What can go wrong with step motors In general, there are four things that can go wrong with a motor They burn up, the brushes go bad, the bearings go bad, or a technician breaks them. They burn up. An important characteristic of the step motor is that it can maintain the holding torque indefinitely when the rotor is stopped. If a step motor stalls out, it is unlikely that it will burn up as with most ac and dc motors. If the motor does burn up it indicates a driver problem. We will explore why this is the case in the next article. Just replacing the motor will cause the motor to burn up again. This is not a common problem with step motors unless there is a bad driver. Example of a bipolar winding and example of a unipolar winding. In a bipolar winding the current flow on the coils is reversed, which reverses electromagnetic polarity. In a unipolar winding, the electrical polarity, or current flow, is never reversed, hence the name unipolar. The brushes go bad. There are no brushes in a stepper motor. Therefore, this will never be a cause of failure. The bearings go bad. The cooler the motor stays, the longer the bearings will last. At times, however, the bearings will go bad. Still, this is not a common problem. The bearings in most inexpensive motors are rated at 3000 hours or more, and most high-end quality motors are rated at 90,000 to 100,000 hours. The technician breaks them. This is the most common cause of failure for step motors. When working with these devices, be careful with them. They do not need to be handled like fine china but don’t try to fix one with a hammer. Most inexpensive motors use glue to hold the shaft to the rotor, and most quality steppers will use grooving along with adhesive. To test the motor, first use an ohmmeter. It will indicate if a winding is burnt up and what type of step motor you have, usually a bipolar or unipolar. A bipolar will always have four leads. A unipolar will have five or six leads. If five leads, the two common wires are connected. A few motors will have eight leads; these motors can be wired as either unipolar or bipolar. Using the ohmmeter, check the resistance of the windings. On a bipolar the resistance for both windings should be the same in both directions. In a unipolar winding, the resistance from each phase to com should be the same in both directions. After you have checked the motor with the ohmmeter, you can use a 9V battery to step the motor through its paces. This will confirm the motor windings are good. You can use the charts in Figure 9 for assistance. You can turn the motor by hand while listening for bad bearings. All PM and hybrid step motors will have some detent torque. PM will have more than the hybrid steppers. If the leads of the step motor are touching, the detent torque will be greatly exaggerated. Be careful! Some technicians have falsely linked this to bad bearings. If the bearings are bad, there will usually be extra axial play in the motor. If possible, check against a known good motor. When replacing a motor, many wonder about the color code for the wires. Remember the windings make up an electromagnet. As long as you have the windings grouped correctly Phase 1 and 3 together and Phase 2 and 4 together the worst that will happen when you go to run the motor is that it will run backwards. To correct, just swap one set of phases 1 and 3 or 2 and 4. A few step motors will have eight leads; these motors can be wired as either unipolar or bipolar. Next time we will explore the differences between Bipolar vs. Unipolar windings and how Constant Current and Constant Voltage types of stepper motor drives work. And answer the question, why do I use a 5V motor when I have a 24V supply? DW Nippon Pulse America You may also like Filed Under Motion control • motor controls, Motors • stepperTagged With nipponpulse

Caramemperbaiki water pump aquarium yang rusak memang akhir-akhir ini sedang banyak dicari oleh masyarakat disekitar kita, mungkin salah satunya kamu. Masyarakat jaman now memang sudah terbiasa memanfaatkan internet di HP untuk mendapatkan informasi gambar maupun video untuk dijadikan contoh salah satunya dalam memasak, dan sesuai judul postingan kali ini
Sebagai penopang dari bobot motor dan ban, pelek motor merupakan salah satu komponen yang berpengaruh besar pada pengendalian jika bermasalah. Pentingnya pelek motor ini juga karena berhubungan dengan keselamatan dan kenyamanan yang biasa terjadi pada pelek motor adalah kerusakan seperti bengkok atau peyang. Hal ini bisa disebabkan karena ada benturan yang keras dengan permukaan jalan atau objek lain, sehingga konstruksi pelek pelek jari-jari, bukan hal yang sulit untuk memperbaikinya. Cukup melakukan penyetelan dan pengencangan jari-jari, masalah pun selesai. Tapi ketika bentuk pelek jari-jari sudah terlipat, semisal akibat tabrakan keras, sebaiknya diganti baru ketimbang diperbaiki. Lalu bagaimana dengan pelek aluminium atau racing jika terjadi masalah seperti itu? Terlebih, biasanya pelek racing menggunakan material alloy yang keras dan tidak mudah Juga Tips Memilih Pelek Aftermarket Utuk MotorUntuk pelek motor jenis aluminium atau racing baik standar pabrik atau produk aftermarket, umumnya jika sudah bengkok ternyata juga bisa diperbaiki dan tergantung dari tingkat kerusakannya. Bisa mengandalkan jasa perbaikan pres pelek untuk melakukan hal perlu diingat sebelum melakukan perbaikan, tentunya perlu mencari referensi bengkel pres pelek yang bagus agar mendapatkan hasil maksimal. Termasuk metode perbaikan apa yang dimiliki bengkel. Karena sebenarnya pengerjaan ini juga memiliki risiko tinggi jika tidak dikerjakan dengan dilakukan oleh mekanik bengkel yang bukan ahlinya, bisa saja dapat merusak bentuk dari pelek yang berujung pada pengeluaran biaya lebih besar hingga penggantian pelek sebelum melakukan perbaikan, konsultasikan dulu masalah dan tingkat kesulitan pengerjaannya. Karena pada dasarnya tidak semua kerusakan bisa diperbaiki oleh jasa pres pelek.
Yang kedua (terakhir). Yah, kok terakhir. Biarin saja, capek nih ngetiknya, nanti khan bisa disambung lagi. Okay, jika Anda sudah tau alamat website yang Anda inginkan, langsung saja ketikan alamat website nya itu di kotak penulisan alamat yang paling atas tadi itu.Jangan nulis di kotak isian yang ada pada halaman Google.Contoh, jika Anda hendak menuju ke alamat
Some controller/drive systems can commutate highpole step motors to form ac brushless a perfect motion system, a motor turns a certain predetermined amount for every unit of electricity it is given. But if the load on the motor becomes too big, it doesn't matter how much power you try to feed it. Beyond a certain limit — maximum torque rating — motors can no longer turn. Motions become erratic, severely compromising accuracy. Why? Servo systems pick up on the resulting error right away, but open-loop systems don't. This is most troublesome when it appears in systems with stepping drive technology. Stepper systems are designed to provide position control without expensive feedback where precise motion is a requirement. Exceeding the available torque or other limits causes lost steps — failures to advance in position that go undetected. As in the below half-stepping produces eight steps per electrical rotation — every 45°— while microstepping ranges from 16 steps per revolution to hundreds or even thousands of points around each electrical rotation. To move the motor, currents to the stator phase windings are varied so as to produce a rotating magnetic field. The rotor attempts to align itself with the magnetic field, following the rotation and producing motion. The high pole count of most stepper motors — 100 poles for a common stepper motor — requires 50 full electrical rotations of the phase currents for one rotor rotation. The phase currents are driven with a sine-cosine signal approximation; that is, one phase is driven with an approximation of a sine wave while the other is driven with an approximation of a cosine signal. When full-stepping a motor, there are four full steps per electrical rotation. These may be located either at 0, 90, 180, and 270° in the case of wave stepping when one phase is on or at 45, 135, 225, and 315° with two-phases-on stepping. Half-stepping produces eight steps per electrical rotation — every 45° — while microstepping ranges from 16 steps per revolution to hundreds or even thousands of points on each electrical rotation. In fact, as we'll discuss further, this is the capability on which “hybrid stepper” solutions to lost steps are based. A hybrid stepper motor is actually a high pole count ac synchronous permanent-magnet motor that may be operated down to zero frequency. Resonance problems A motor produces torque only when its rotor is not aligned with the stator magnetic field. Torque varies in a roughly sinusoidal manner with this “error angle.” Two things in a motor combine to effectively form a non-linear spring/mass rotary pendulum • The interaction between the stepper motor stator field and the rotor. • The rotor's moment of inertia. Each step or fractional step applied to the motor windings shifts the equilibrium point of the pendulum, establishing a new error angle. The new error angle results in a new torque point, and the rotor — operating as a spring/mass rotary pendulum — attempts to follow. If the system is lightly damped which is common and the system is given enough time, the rotor overshoots the equilibrium point, ringing back and forth until it settles in. If the next step occurs when the system has sufficient speed while going in the opposite direction, then the peak instantaneous torque available may not be sufficient to keep the rotor within ±180 electrical degrees. When this occurs, the system slips into the adjacent cycle of the error-torque sine wave. When this happens the stepper, in effect, has just lost four steps. If the rotor is not able to regain synchronization with the stator, many more steps may be lost. The motor produces torque only when the rotor is not aligned with the stator magnetic field, varying in a roughly sinusoidal manner with error angle. A rotor's ringing as a rotary pendulum — associated with dips in torque available from an open-loop stepper — is commonly called low-frequency resonance. The motor, applied current, and load all affect this resonant frequency, resulting in low-frequency resonance usually around 50 to 150 rpm, corresponding roughly to 150 to 500 steps per sec. Stepper correction Microstepping reduces the amplitude of the torque variations between steps, which reduces the excitation of the pendulum resonance, and thus the likelihood that the error angle will get large enough to lose steps. Note microstepping is most effective with motors that have been optimized for it. To illustrate, many stepper motors optimized for full stepping have a detent torque that aids full-step positions, but actually causes significant cogging when microstepping. The resolution of microstepping drivers often drops as the rotational speed increases; the reduction in resolution is inevitable due to the limited bandwidth of both controller and driver. For argument's sake, imagine a designer attempted to operate a microstepping controller with 40,000 steps per sec at 50 rps 3,000 rpm. It would then have to output 2,000,000 microsteps per sec to keep all the steps. Even if this were possible, a typical PWM driver only operates at 20 to 40 kHz — so the fine interpolations would never reach the motor. To address this inability to hit every microstep at higher speeds, the number of microsteps per second is often reduced as the motor speed increases. Transitions between these different resolutions can cause an impulse in torque to the motor, causing ringing that can result in lost steps. Instability There is another torque reduction that takes place at higher speeds, roughly corresponding to the speed at which the power-supply/driver combination becomes unable to control the current. This, in turn, corresponds to the start of the parabolic “constant power” portion of the torque curve, called mid-resonance instability. Loss of the ability to control current occurs when a motor's back-EMF rises to the point where power-supply voltage applied to the driver cannot overcome both the back-EMF and resistive and inductive drops at the requested current. The current undergoes a 90° phase lag from the commanded current as the driver switches from current control mode to voltage drive mode. Any mechanical ringing of the rotor pendulum causes the motor to speed up and slow down, changing both the velocity and relative angle between the driven field angle and the rotor angle. This changes two things the magnitude and angle of the back EMF with respect to the phase of the commanded current. Why does this matter? It can cause the driver to switch back and forth between voltage mode full on and current mode chopping. This can reduce the damping of the system, or even pump up the ringing until the rotor loses sync with the commanded position and loses steps, or stops spinning altogether. Operation in this speed region may require either mechanical damping or electrical damping to stabilize the operation of the motor to provide usable torque. Sudden movements, external forces Low-frequency resonance and mid-frequency instability are not the only ways to lose steps. The rotary pendulum is also set into swinging in other words, becomes excited by sudden changes in commanded velocity and load. Instabilities can also be mechanical. Shafts, couplings, and power transmission components between motor and load also act as rotary springs. For example, gear trains release the load when changing direction, due to backlash. While the load is uncoupled from the system, the motor accelerates because of lower inertia until the backlash has been taken up. When the gears engage again, the difference in velocity between the motor and load can reflect excess torque back to the motor. Thus the system cycles The motor slows below the speed of the load, again the load decouples, and then the motor speeds up. In some cases, the change in speed may be enough for the gears to first strike on one face and then rebound and strike on the opposite side, to repeat several times. The exact timing of the reversal ringing may vary with both the position of the gear train and with the wear of the gears, making it difficult to choose a stepping sequence that compensates. A different stability issue arises with belt-driven linear movers. These units experience a resonance, the frequency of which constantly changes. As anyone who has ever played a stringed instrument or a rubber band stretched across a cup can attest, pitch or resonant frequency can be varied by changing either the string's tension or its length. The motion of a linear belt mechanism varies both of these. Linear force applied to the carrier and its load is the difference between the tensions of the two belt halves, while the position of the carrier varies the length of these belt sections. Note that these same effects change both the resonance frequency of the belt itself, and that of the belt-load system. This means that the same move with the same load and motor may work fine with the system starting at position A but not at position B. And what if the system carries a varying load? That only complicates the matter further. Increasing stability Both mechanical and electrical approaches are used to stabilize stepper motors. Mechanical approaches usually involve increasing motor rotary inertia to make load variations less significant, or adding damping to the system. Rotary inertia is increased either by swapping out the motor size or design, or by coupling flywheels to the motor shaft as close to the motor as possible. A system's mechanical damping is increased by including magnetic dampers, viscous inertial dampers, ferrofluid, and elastic motor mounts, couplers, and belts. On the other hand, electronic approaches to increase stability typically measure directly or indirectly motor position and speed. Then current to motor windings is varied in a way that damps the system. These electronic methods include • Measuring or estimating the back EMF of each winding which includes both speed and position information and adding a portion of the back EMF signal into the commanded current at each winding • Modifying driver circuits • Using position/velocity information to modify the applied pulse train to the stepper motor • Full servo control of the stepper motor. More resources — for further reading Leenhouts, Albert. Step Motor Design Handbook. Kingman Litchfield Engineering Co., 1990. Labriola, Don and Dan Jones. “Using Magnetic Gearing Performance from a Compact Integrated Servo.” Proc. of 28th Incremental Motion Control Systems and Devices. Lebanon IMCSS, 1999. Houda, Akihiko. “2-Phase Hybrid Stepping Motor with Keep-in-Step Control.” 28th Incremental Motion Control Systems & Devices.” Proc. of 28th Incremental Motion Control Systems and Devices. Lebanon IMCSS, 1999. Rusu, Calin. “DSP Based Control For the Hybrid Stepper Motor with Field Oriented.” Proc. of 28th Incremental Motion Control Systems and Devices. Lebanon IMCSS, 1999. Leenhouts, Albert. “Step Motors and Gear Play.” Proc. of 29th Incremental Motion Control Systems and Devices. Lebanon IMCSS, 1998. Nordquist, Jack. “Origins and Remedies for Resonant Activities in Step Motor Systems.” Proc. of 26th Incremental Motion Control Systems and Devices. Lebanon IMCSS, 1997. Raj, K., B. Moskowitz, J. Torres, D. Cooper, T. Burke, B. Trudeau. “Performance Characteristics of Ferrofluid Steppers.” Proc. of 23th Incremental Motion Control Systems and Devices. Lebanon IMCSS, 1994. Marushima, K. and Ralph Horber. “Development of a High Performance Sensorimotor with Sensor and Driving Coils.” Proc. of 23th Incremental Motion Control Systems and Devices. Lebanon IMCSS, 1994. Ohm, Dal, and Venkatesh Chava. “Torsional Resonance in Servo Systems and Digital Filters.” Proc. of 23th Incremental Motion Control Systems and Devices. Lebanon IMCSS, 1994. Kruse, David. “BLDC/Stepper Motor Controller for High Performance Incremental Motion.” Proc. of 22nd Incremental Motion Control Systems and Devices. Lebanon IMCSS, 1993. Bodson, Marc, John Chiasson, and Ronald Rekowski. “A State Feedback Tracking Controller for a Permanent Magnet Stepper Motor.” Proc. of 21st Incremental Motion Control Systems and Devices. Lebanon IMCSS, 1992. Jufer, Marcel, and G. Heine. “Hybrid Stepping Motors — 25 Years of Development.” Proc. of 25th Incremental Motion Control Systems and Devices. Lebanon IMCSS, 1996.
7Jalan Nasional Non Tol : 47.017 km Menuju 98% Jalan Mantap Tahun 2019 8 Pengertian Long Segment • Long Segment merupakan penanganan preservasi jalan dalam batasan satu panjang segmen yang menerus (bisa lebih dari satu ruas) yang dilaksanakan dengan tujuan untuk mendapatkan kondisi jalan yang seragam yaitu jalan mantap dan standar (standar Source Step motor adalah salah satu jenis motor listrik yang digunakan dalam sistem kontrol gerakan presisi. Namun, terkadang step motor mengalami kerusakan, salah satunya adalah bengkok. Jika step motor yang bengkok tidak segera diperbaiki, maka akan mengganggu proses produksi dan akhirnya mengurangi produktivitas. Berikut adalah cara memperbaiki step motor yang bengkok. 1. Identifikasi Penyebab Bengkoknya Step Motor Source Sebelum memperbaiki step motor yang bengkok, pertama-tama harus diidentifikasi penyebabnya. Beberapa faktor yang dapat menyebabkan step motor bengkok antara lain kelebihan beban, terkena benturan, atau proses instalasi yang salah. Dengan mengetahui penyebabnya, maka akan mudah untuk menentukan cara memperbaikinya. 2. Pastikan Tidak Ada Komponen Lain yang Rusak Source Selain step motor yang bengkok, ada kemungkinan komponen lain juga rusak akibat bengkoknya step motor. Oleh karena itu, sebelum memperbaiki step motor yang bengkok, pastikan tidak ada komponen lain yang rusak, seperti gir, pulley, atau roda gigi. Jika ada komponen lain yang rusak, maka harus diperbaiki terlebih dahulu sebelum memperbaiki step motor yang bengkok. 3. Lepaskan Step Motor dari Sistem Kontrol Gerakan Source Setelah mengetahui penyebab dan memastikan tidak ada komponen lain yang rusak, langkah selanjutnya adalah melepaskan step motor dari sistem kontrol gerakan. Hal ini bertujuan untuk memudahkan proses perbaikan dan menghindari kerusakan pada komponen lain saat proses perbaikan dilakukan. 4. Periksa Kondisi Poros Motor Source Setelah melepaskan step motor dari sistem kontrol gerakan, periksa kondisi poros motor. Jika poros motor bengkok, maka harus dilakukan perbaikan atau penggantian poros motor yang baru. Namun, jika poros motor masih dalam kondisi baik, maka langkah selanjutnya adalah memperbaiki atau mengganti bagian-bagian yang rusak pada step motor. 5. Perbaiki atau Ganti Bagian yang Rusak Source Bagian-bagian yang rusak pada step motor yang bengkok dapat berupa gigi, poros, atau magnet. Jika gigi pada step motor yang rusak, maka harus diganti dengan gigi yang baru. Jika poros pada step motor yang rusak, maka harus diperbaiki atau diganti dengan poros yang baru. Sedangkan jika magnet pada step motor yang rusak, maka harus diganti dengan magnet yang baru. Pastikan untuk menggunakan bagian yang sesuai dengan spesifikasi step motor agar tidak mengganggu kinerja step motor. 6. Pasang Kembali Step Motor ke Sistem Kontrol Gerakan Source Setelah melakukan perbaikan atau penggantian bagian yang rusak pada step motor, langkah selanjutnya adalah memasang kembali step motor ke sistem kontrol gerakan. Pastikan untuk memasang step motor dengan benar dan sesuai dengan instruksi pemasangan. 7. Uji Kinerja Step Motor Source Setelah memasang kembali step motor ke sistem kontrol gerakan, uji kinerja step motor. Pastikan step motor berjalan dengan baik dan tidak mengalami masalah seperti bengkok atau rusak lainnya. Jika masih terdapat masalah, periksa kembali komponen lain pada sistem kontrol gerakan yang mungkin menyebabkan masalah pada step motor. Kesimpulan Memperbaiki step motor yang bengkok dapat dilakukan dengan mengidentifikasi penyebab bengkoknya step motor, memastikan tidak ada komponen lain yang rusak, melepaskan step motor dari sistem kontrol gerakan, memeriksa kondisi poros motor, memperbaiki atau mengganti bagian yang rusak, memasang kembali step motor ke sistem kontrol gerakan, dan melakukan pengujian kinerja step motor. Dengan melakukan perbaikan sesuai dengan instruksi di atas, maka step motor yang bengkok dapat diperbaiki dengan baik dan menghindari kerusakan pada komponen lainnya. Related video of Cara Memperbaiki Step Motor Yang Bengkok CaraTepat Memperbaiki Velg Sepeda Motor yang Bengkok Apakah anda ingin memperbaiki velg sepeda motor yang bengkok? Pada sepeda motor, velg berguna sebagai tempat berpegangan roda kendaraan. Oleh karena itu, bentuk velg depan dan velg belakang harus benar-benar lurus agar keduanya dapat berjalan secara seimbang. Cara Melepas dan Memasang
Berikut adalah langkah-langkah untuk memperbaiki step motor yang bengkok 1. Periksa kerusakan secara visual Langkah pertama yang harus dilakukan adalah memeriksa kerusakan secara visual. Cek apakah ada bagian yang patah atau cacat pada motor. Jika ada, segera ganti bagian yang rusak. 2. Lepaskan motor dari perangkat Jika motor masih terpasang pada perangkat, lepaskan terlebih dahulu. Hal ini akan memudahkan proses perbaikan. 3. Gunakan micrometer Gunakan micrometer untuk mengukur sudut bengkok pada motor. Pastikan bahwa motor dalam posisi yang stabil saat diukur. 4. Gunakan press Gunakan press untuk membenarkan sudut bengkok pada motor. Tempatkan motor pada posisi yang tepat pada press dan pastikan bahwa motor tidak bergeser saat ditekan. 5. Periksa kembali Setelah proses perbaikan selesai, periksa kembali motor dengan micrometer untuk memastikan bahwa sudut bengkok sudah benar-benar diperbaiki. 6. Pasang kembali motor pada perangkat Setelah motor sudah diperbaiki, pasang kembali pada perangkat dengan benar. Pastikan semua kabel dan konektor terpasang dengan baik dan aman. Kesimpulan Step motor adalah komponen yang penting dalam beberapa aplikasi mesin. Jika terjadi kerusakan, seperti bengkok, maka segera lakukan perbaikan agar tidak mengganggu kinerja mesin secara keseluruhan. Dalam melakukan perbaikan, perhatikan langkah-langkah yang sudah dijelaskan di atas agar proses perbaikan dapat dilakukan dengan baik dan efektif.
FJFUS. 311 212 314 420 251 24 213 480 482

cara memperbaiki step motor yang bengkok